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ATR-FILM COOLING OF A SUPERSONIC NOZZLE

by
Bing H. Lieu

ABSTRACT: An experimental study was made of the internal air-
film cooling of a Mach 2.4, nonadiabatic wall, axially symmetric
nozzle. The main stream air was heated to supply temperatures
from 672 to 12129R at supply pressures from 115 to 465 psia.

The film coolant air was injected through a single peripheral
slot at an angle of 100 from the nozzle wall. The coolant-to-
main stream mass flow ratios were varied up to 20 percent.
Steady~state nozzle wall temperatures were measured in both the

subsonic and the supersonic flow regimes.

The turbulent pipe flow equation of Dittus and Boelter was
found to be applicable in predicting the heat transfer rates in
the absence of film ccoling. A modified version of the semi-
empirical equation of Hatch and Papell was found applicable in
estimating the film-cooled nozzle wall temperatures.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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Air-Film Cooling of a Supersonic Nozzle

This report presents a comparison between experimental data and
theoretical calculations of air-film cooling of an axisymmetric,
Mach 2.4 nozzle.

A number of people have contributed towards this project,
Special thanks are due to Mr. R, C. Sullivan for the instrumen-
tation of the nozzle and Mr. F. W. Brown for his general
assistance in performing the experiment.

This work was sponsored by the Bureau of Naval Weapons Special
Projects Office under Polaris Long Range Research {(Task No.
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Captain, USN
Commander
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SYMBOL LIST

(The units listed here are consistent with the equations given
in this report.)

A flow area, in”

Cp specific heat at constant pressure, Btu-in®/lbm-ft®-©OR

d diameter, in

f velocity ratio function defined by equations (21) and (22)

h heat transfer coefficient, Btu/sec-f£t*-©R

k thermal conductivity, Btu-in/sec~ft®-O9R

L injection slot length = 2%r for axisymmetric slot, in

M Mach number

m mass flow rate, lbm/sec

Nu Nussell aumber

P pressure, 1bf/in® abs,

p pressure ratio defined by equation (3)

Pr Prandtl number

q neat flux, Btu/sec-ft®

r radius, in

Re Reynolds number

S injection slot width, in

T temperature, ©R

u velocity, ft/sec

Z axial distance measured from ths inijection slot exit, ia

o1 thermal diffusivity, in-ft/sec

B effective injection angle defined by equation (19),
radians
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™

geometrical injection angle, radians

n adiabatic wall film-cooling effectiveness

n' nonadiabatic wall film-cooling effectiveness
H absolute viscosity, lbm/sec-in

p mass density, lbm/ft-in®

) exponent defined by equation (20)

¥ mass flow paramgter defined by equation (4),

1bf/in® abs/ORY3

Subscripts o

a upstream of orifice in mass flow meter

aw adiabatic wall

b downstream of orifice in mass flow meter
c coolant, at injection slot exit

d local diameter

£ maln stream

H cooling water

i nozzle inner surface

J inner surface thermocouple junction locations
o nozzle outer surface

S main stream supply (stagnation conditions)
w nozzle wall

o local free stream

Superscripts

o zero coolant injection

* conditions at throat

vi
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INTRODUCT 10N

When a surface 15 exposed to a high energy fluid streanm,
some means of cooling the surface may become necessary. Many
methods of cooling are available or have been proposed (ref. (1)).
Among these is film cooling. Film cooling employs a second
fluid (the coolant) introduced between the surface and the high
energy main stream, thus absorbing the heat which would other-
wise flow from the main stream to the surface. The coolant,
not necessarily the same fluid as the main stream, can be
injected through a single slot or a series of slots in the
surface.

In any particular application, many factors need to be con-
sidered in selecting a cooling method, Some of the features of
film cooling are the following:

(1) Film cooling may be applied when needed.

(2) Film cooling may be applied locally (single-slot
arrangement) or over an extended surface (multiple-slot technique
(ref. (2)).

(3) Film cooling does not alter the geometry of the surface
(as in ablative cooling).

(4) Film cooling does not require a special material or
manufacturing process (as in porous-wall transpiration cooling),

The application of film cooling has been studied quite
extensively (e.g., refs. (1) through (8)). The simplified flow
model of Hatch and Papell (ref. (6)). developed for the gaseous
film cooling of an adiabatic plate, resulted in a semi-empirical
equation, This equation, incorporating the injection slot angle
factor of reference (7), was used with some success by Lucas
and Golladay (ref. (8)) in correlating their experimentdl data
for film cooling of a rocket motor.

In the present investigation, the air~film cooling of an
axially symmetric, nonadiabatic wall, Mach 2.4, contoured nozzle
was studied by relating the decrease in the local nozzle wall
temperatures with the increase in coolant mass flow rate. The
equation of reference (7) was modified to apply to the axisym-
metric, nonadiabatic wall used in the experiment.



EXPERIMENTAL PROCEDURE

Apparatus and Instrumentation

The air-film cooling of a supersonic nozzle was performed
with the apparatus shown schematically in figure 1. The com-
pressed air in the bottle field was used as the supply for both
the main stream and the film coolant., The main stream air was
heated in a propane-~fired, indirect heat exchanger, the supply
conditions being measured with a total temperature thermocouple
and a static pressure tap, both located in a plenum chamber to
be described below. The coolant air was tapped directly from
the bottle field via a l-inch line and metered with an orifice
of 0.101-inch diameter. The coolant mass flow was controlled by
a valve upstream of the orifice.

The essential features of the film cooling apparatus
(fig. 1) consisted of a plenum chamber, a contraction section,
an approach section, a coolant injection slot, and a nozzle.
The plenum chamber is 54 inches long by 54 inches ID, The
contraction section is contoured, 8% inches long by 5z-inch/l-inch
ID. The appicach section is 6 inches long by 1 inch ID. The
nozzle (fig. 2a) is 13 inches long, is made of a chromium-copper
alloy, and is externally water-cooled. The inlet and the exit
sections of the nozzle are both 1 inch in diameter; the throat
is 0.645-inch in diameter and 5 inches downstream of the injec-
tion slot exit. The design flow characteristics along the nozzle
centerline are shown in figure 2b. The coolant injection slot
(fig. 2c¢) has a width, S, of 0.0087-inch and a discharge angle,
¢, of 10° measured from the nozzle wall.

Fifteen pairs of chromel-alumel thermocouples embecded in
the nozzle wall at fifteen axial locations measured the tem-
perature distributions along the inner and outer surfaces.
These thermocouples were embedded approximately 0,03 inches from
the inner wall and mounted on the outer wall., The fifteen
thermocouple stations covered a range 1.25"< z s 9.0CG", as shown
in figure 2. These thermocouples were displaced circumferentially
along the nozzle for ease of installation and reduction of
stress. An axisymmetric temperature field in the nozzle wall is
assumed.

The thermocouples measuring the nozzle inner surface tem-
peratures were cemented in tapered plugs made of the same
material as the nozzle such thai the junctions protrude from the
side of the plugs (fig. 4). These plugs were force-fitted and
cemented into mating, tapered hoiss in the nozzle wall. The
nozzle inner surface was machined after the plugs were installed,
thus ensuring a smooth surface. The thermocuuples measuring the
outer surface temperatures were peened and cemented into small

2
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indentations on the surface. This technique of thermocouple
installation was used so as not to perturb the temperature field
in the nozzle wall. The nozzle and thermocouple assembly was
inserted and sealed inside a water jacket for the nonadiabsztic
test conditions (fig. 2a).

The thermccouple outputs were referenced to "cold" junctions
in an oil bath at ambient temperature. The o0il bath temperature
was measured with another Cr-Al thermocouple with its cold
Junction in an ice bath, This thermocou, .e read-out method,
shown schematically ia figure 5, required only one ice bath and
relatively short thermocouple wires. The validity of the method
is insured by two fundamental laws of thermoelectric thermo-
metry; viz., the law of intermediate metals and the law of suc-
cessive temperatures (ref. (9)).

The output of all the thermocouples was recorded on magnetic
tapes by an electronic digital read-out system.

Test Conditions and Procedure

The experimental conditions used are given in the following
table:

Main Stream Main Stream Mass Film Coolant
Supply Conditions Flow Rate Mass Flow Rates
Without Film Cooling

Tg Pg ﬁ; (h,)min (mg)max
(°R) (psia) (lbm/sec) (1bm/sec) (lbm/sec)
672 315 2.113 00,0737 0.2088
852 315 1.876 0.0409 0.2085
852 465 2,770 0.0605 0.2020
1032 115 0.6224 0.0368 0.0778
1032 215 1.164 0.0453 0.2324
1032 315 1.705 0.0742 0.2102
1032 465 2.517 {no film cooling data)
1212 115 0.5743 0.0390 0.0953
1212 315 1.573 0.0739 0.2097
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The main stream supply conditions were maintained constant
for each test ($4°R and t1.5 psi) by an automatic control system.
The water flow rate was maintained at a constant value high
enough to prevent local boiling.

The experimental procedure was as follows: For each of the
supply conditions used, the nozzle wall temperatures without
film cooling were recorded after they had reached steady-state
values., Different amounts of film coolant were then injected
into the nozzle and the steady-state wall temperatures were
recorded for each coolant flow rate.

ANALYSES AND RESULTS

The experimental data were reduced and analyzed to yield
information concerning nozzle heat transfer without film cooling
and nozzle wall temperature reduction with film cooling.

The basic quantities and parameters needed for the analyses
were determined by the following relations and assumptions:

(1) Mass Flow Rates

(a) The main stream mass flow rate is (assuming one-
dimensional isentropic flow, sonic throat, d*=0,645",
and no film coolant)

g = 0.174 Pg/J/Ts (1)

(b) The film coolant mass flow rate is, (from the
standard ASME orifice flow equations for air
(ref. (10))) for subcritical orifice flow

(p 2 0.535),
me = 5.19 x 1077 ¥/(1 - p)(1.0755p - 0.0755) (2)
where
P = Pb/Pa (3)
¥ = (0,707 + 0.2 3p)Pa/JE; (4)

and for critical orifice flow (p s 0.535),
me = 2.51 x 107° 4 (5)

4
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(2) The thermocouples measuring the inner surface tempera-
tures were approximately 0,03 inch from the inner surface
(fig. 3). These thermocouple readings were assumed to correspond
to the inner surrace temperatures (i.e., T J’Twi) in determining
the temperature difference in equation (IOY and in computing the
film cooling effectiveness defined by equation (23).

(3) Properties of Main Stream Air

(a) The absolute viscosity is (from ref. (11))

0.609 x 10" *(1/100)3/?
wo= X (t/ ) , lbm/sec-~in (6)

198.7 + T

(b) The thermal conductivity is (from ref. (11))

0.38 x 1072 (1/100)3/? .
k = , Btu-in/sec-ft°-R (7)
441.7 x 1073%/7 L o

(¢) The Prandtl number is assumed constant at 0,7,

(4) The properties of the coolant air were obtained from
reference (1l1) based on a trmperature at the injection slot exit
of 530°CR.

(5) The thermal conductivity of the nozzle wall material is

given by reference (12). For the range 672°R s Ty < 1212°R, the
thermal conductivity is essentially constant at

Ky = 0.672 Btu-in/sec-£ft°-OR (8)

Nozzle Heat Transfer Without Film Cooling

One-~dimensional (radial) heat conduction through the nozzle
wall was assumed, (This assumption is discussed more fully in a
late section.) Thus

g = kw(Tyj - Tyo)/ri loglrg/ry) (%)
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The heat transfer coefficient is, by definition
hm = Q/(Taw - Twl) (19)

The adiabatic wall (recovery) temperature, Tay, in equation (10)
was evaluated based on a turbulent recovery factor of 0.88% and
a specific heat ratio of 1.4:

3

1 + 0,2 Mc®

From the nozzle geometry and measured values of Ty and Tyqo, the
nozzle heat transfer results were obtained from eguations (9)
and (10), and are shown in figure 6 as (Nud)cn Vs, (Red)m, where

(Nug) o = hod/k, (12)

~~
?-J
W
S’

(Req), = 4Mmg/Tdue

Also included in figure 6 are the relation for turbulent pipe
flow of Dittus and Boelter (ref. (13))

(Nug) . = 0.023(Req) o (Pr)at (14)

and the relation for solid propellant rocket nozzle heat transfer
of Colucei (ref. (14))

(Kug), = 0.023(Reg) o’ (15)

For laminar pipe flow, reference (15) gives

(Nug),, = 4.36 for uniform heat flux

(16)



NOLTR 64-65

Film~Cooled Nozzle Wall Temperaturés

The equation of reference (7) giving the film-cooling
effectiveness, 7n, for an adiabatic plate, is

n = cos(0.88)e % (17)

where
n o= (Tay ~ Tyi)/(Taw - Tc) (18)
8 = tau"! sin ¢ (19)

cos € + (pu)g/(pJYZ

8 O

L ‘ 1 8
0 = [.h___f. _ 0.04] Fd—zg}l/ £ (20)

Lim cplg

e

The velocity ratio function, f, in equation (20) is defined by

f=1+0.4 tan"l[(ug/uc) - 1]
when (21)

(ug/uc) < 1,0

and
¢ - [HQ}LHXuC/ug) -1] (22)
U“g‘
when (ug/ug) =2 1.0

Equations (21) and (22) are shown in figure 7.

In analogy with equation (18), the film cooling effective-
ness for a nonadiabatic surface is defined by*

n' = (Tyy - Twi)/ (Toi - Tc) (23)

[¢]

The film cooling data were plotted in figures 8s through 8h as
n' vs. @. The measured values of Ty and Ty were assumed equal
to Twi and Téﬁ, respectively, in the evaluation of the measured
effectiveness, r'. The straight line in these figures is given
by the equation

¥For an insulated (adiabatic) surface, Tgi = Tawe
7



HOL IR 64-.05

n =g 7 (24)

In the experiment, the slot angle factor, cos(0,8B8), was approx-
imately unity for all the condition encountered. iIn both
equation (24) and datz, the parameter ¢ was obtained from
equaticn (20) with b, evaluated from eguation (14) and at z=0,
and the terms ug snd £ evaluated at =0 (ref. (8)).

DISCUSSION AND CONCLUSIONS

The one~dimensional heat transfer analysis, used for all
the data without film cooling, is expected to be fairly accurate
because of the slenderness of the nozzle configuration
(see fig. 2a). A comparison between the one-dimensional analysis
and an exact solution of a sample temperature field yielded
negligible differences in the resulting heat transfer rates.
The experimental Nusselt numbers were, therefore, computed by
the one~dimensional method. The results showed fair agreement
with the turbulert flow correlations as shown in figure 6. The
scatter in the data of figure 6 can be attributed mainly to the
relatively low wall temperature levels and temperature gradients.
The probable error iy the measured heat transfer rates (thus,
the Nusselt numbers) was estimated to be as low as 2% in the
throat region and as high as +30% at z=1.25" and 2=9.0",

The film-cooling offectiveness as defined by equation (23)
. is a measure of the decrease in the wall temperature due to
film cooling relative to the maximum possible decrease, whereas
the original definition (Eg. (18)) has no physical meaning when
. agplied to a nonadiabatic surface. The heat transfer coefficient,
h®, appearing in the parameter ¢ of equation (20) was computed
from equation (14). The correlation thus obtained (Eq. (24)) is
shown in figures 822 through 8h. The scatter in the data is
mainly due to tbe low measured wall temperatures. The ratio of
the two small differences tiunt defined thne iIiilm~cooiing effective-
ness (Eq. (23)) can be quite inaccurate. Conversely, the
relatively large discrepancies between data and equation (24)
indicated in figures 8a through 8h resulted in only moderate
discrepancies in terms of the wall temperatures. An example of
this is shown by comparing the solid curves with the data in
figure 9.%* The dashed curves in figure 9 will be discussed later.

The effect of film cooling on the nozzle throat temperature
is shown in figure 10 along with the predictions of equation (24),.
The dashed curves in figure 10 are the estimated throat tem-
peratures that would result if the ccolant and the main stream
were completely mixed a2t this point, Figures 8 to 10 will be
discussed more fully later,

¥0nly twelve data points appear in figure 9 instead of the
designed fifteen hscause three thermocovples became inoperative
during the experiment. 3
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In an attempt to study the phenomenon of film cooling and,
perhaps, to improve the carrelation, the theoretical flow model
of reference (6) was extended to the case of a nonadiabatic,
axisymmetric nozzle (fig. 11). The assumptions used in the
development of the extension are as follows:

(1) The coolant does pot mix with the main stream,

(2) Heat conduction through the nozzle wall is one-
dimensional radial.

(3) The local coolant temperature is equal to the local
wall temperature.

(4) The temperature gradient through the coolant film is
negligible. (These first four assumptions are the same as those
of reference (6).)

(5) Heat transfer from the main stream is governed by
equations (10) and (l1) with hQ computed from equation (14).

(6) The water temperature is constant at 530°R. (The
total rise in the water temperature from inlet to exit due to
heat transfer from the nozzle wall was estimated to be less than
10°R for the worst case.)

(7) The coolant temperature at injection slot exit is 530°R.
A heat balance Q1=Qa+Qa and Qa=Q¢ (fig. 11) yielded the
following differential equation:

dT 27 o
‘Wi = e - 1heri(Taw - Tyi)d
dz {m cp)c

(25)
TWI - T" ‘
(log(ro/ry)/ky) + (L/h,re) ]

in which hQ, ry, and T,y were all allowed to vary with z.
Typical numerical solutions of equation (25) are shown in
figure 9 as dashed curves. It is seen from figure 9 that the
extension did not offer a better correlation of film-cooling
data than equation (24). Thus, it is concluded that the
phenomenon of film cooling of a nonadiabatic nozzle is more
complex than that described by equation (25).
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Although no realistic flow model was developed for the
film cooling of a nozzle, the following qualitative observations
may he made:

(1) Figures 8a through 8h indicate that equation (24)
generally overestimates the effectiveness for the subsonic flow
regime and underestimates it for the sonic and the supersonic
flow regimes, Thus, equation (24) would be conservative in
estimationg the film-cooled nozzle throat temperatures (fig. 10).

(2) Although figures 8a through 8h showed large discrepancies
between the measured and the predicted film-cooling effective-
nesses, the difference between the measured and the predicted
wall temperatures is less severe,

(3) The throat temperature (fig. 10) decreases with
increasing coolant flow until an optimum value is reached.
Further increase in the coolant flow, in some cases, resulted
in an increase in the throat temperature. This reversal is
believed to be due to the premature mixing of the coolant with
the main stream, resulting in a loss of the insulation effect.

(4) Optimum cooling is achieved when the coolant - wvelocity
at the injection slot exit is approximately equal to the main
stream velocity at that point. This can be seen from figure 10
and the following table:

[. .0
Tg i?c/mg .
U(uc/ug)zﬂo = 1

672°R 4.5%
852°R 5.6%
10320R ' 6.8%
1212°r 8.0%

For lack of a rigorous and exact analysis and a comprehen-
sive experimental investigation, it is felt that, for engineering
purposes, equation (24) offers a fair correlation of film-cooling
data and may be used in estimating the film-cooled wall tem-
peratures.

SUMMARY

The air-film cooling of a Mach 2.4, nonadiabatic wall,
axially symmetric, contoured nozzle was investigated experimentally.
The main stream was air at supply conditions of 672°R to 1212°R
and 115 psia to 465 psia. The film coolant was air at ambient
temperatures and injected through a single annular slot of 10°

10
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discharge angle. The coolant to maln stream mass flow ratios were
varlied up to 20 percent. Steady-state temperature distributions
along the inner and the outer walls were measured in both the
subsonic and the supersonic flow regimes.

For the supply conditions tested, the main stream flow was
fully developed and turbulent. The heat transfer data without
film cooling were correlated reasonably well with the equation
of Dittus and Boelter for turbulent pipe flow.

The film-cooled nozzle wall temperatures were correlated
qualitatively with a modified version of the equation of Hatch
and Papell, the modification being a definition of the film-
cooling effectiveness for a ncnadiabatic surface.

Optimum cooling is achieved when the velocities of the two
streams at the injection slot exit are approximately equal.

For engineering purposes, the film-cooled wall temperatures
may be estimated by the following procedure (for both adiabatic
and nonadiabatic surfaces):

(1) Calculate, by conventional methods, the wall tempera-
tures in the absence of film cooling.

(2) For a given coolant flow rate, compute the effective-
ness from eguation (17) or (24), evaluating all the parameters
(except "2") in the term ¢ at z=0,

(3) Compute the film-cooled wall temperature from
equation (18) or (23),.

Steps (2) and (3) are iterated if the film-cooled wall

temperature is prescribed and the coolant flow rate is to be
determined.

11
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